

Substation Asset Management and Condition Monitoring – A SP PowerGrid Case Study

Kerk See Gim, Power Automation

Thanks to Er. Lim Liang Kuang, PowerGrid

OBJECTIVES

- Share and compare traditional maintenance and conditionbased maintenance model
- Encourage customers to practise Condition Monitoring to prevent equipment failures
- Share condition monitoring & condition-based maintenance experiences
- Share how to prevent or reduce voltage dip incidents
- Our Way forward

Impact of Power Outage

Largest-Ever Blackout Hits Eastern U.S. Aug. 14, 2003

A huge power blackout hit U.S. and Canadian cities Thursday, Aug. 14, 2003, driving workers in New York, in this image from television, into the streets, shutting subways in blistering heat and closing four nuclear power plants in Ohio and New York state. New York City Mayor Michael Bloomberg said there was no evidence of terrorism as a cause. (AP Photo/Courtesy WNBC-NY)

Power outage caused inconvenience to the public

Largest-Ever Blackout Hits Eastern U.S. Aug. 14, 2003

Stranding people in sweltering subways and sending office workers streaming into the streets in 90-degree F heat.

The blackout, affecting a large portion of north-eastern United States, caused major disruption of businesses and daily life for millions

Power outage caused inconvenience to the public

Copyright © All rights reserved.

PD failure leading to a fire (15 Feb 2019)

Carlton Hotel equipment failure leads to power outage

This article is more than 12 months old

CHOO YUN TING & NG HUIWEN **O Feb 15, 2019 06:00 am**

f D 💟 🕥 🖸

First, there was equipment failure at a substation supplying power at Carlton Hotel yesterday.

Then a fire forced the evacuation of around 1,000 people from the Bras Basah building, while lights went out in parts of Bugis, City Hall, Marina and Somerset.

Shops and restaurants at the likes of Chijmes, Plaza Singapura and The Gateway were hit as power was cut off a little after 1pm.

While the trains continued to run, stations on the North-East Line - HarbourFront, Outram Park, Chinatown, Clarke Quay, Dhoby Ghaut, Boon Keng and Potong Pasir - were also affected by blackouts.

The power outage, which lasted for 12 minutes from 1.09pm to 1.21pm, was later linked to the fire.

Equipment failure at the electrical substation at Carlton Hotel had led to the power outage and an electricity flashover, or an abnormal electrical discharge.

🖾 (Above) Clarke Quay MRT station was one of those affected by blackouts. TNP PHOTOS: KELVIN CHNG, SAHIBA CHAWDHARY

What is the purpose of conducting maintenance service for switchgear, transformer?

WHAT CAN WE DO ?

Time Based Maintenance on Switchgears

Primary Elements

- AC Pressure tests on Circuit breakers
- Insulation tests on power cables and control wires
- Contact resistance tests

Secondary Elements

- Lubricate operating and link mechanism
- Check control wire for loose connections
- Secondary injection tests

Time Based Maintenance on Transformers

Primary Elements
Dielectric test on oil
Purify oil in main tank or replace if necessary
Replace oil in tap changer compartment
Ratio test on all tap positions
Insulation resistance test

Secondary Elements
Calibrate and check gauges & relays
Clean cable termination
Replace all gaskets
Check control wire for loose connections

Past Time-based maintenance on Small Oil-Volume Circuit Breaker

Complete overhaul of circuit breaker

Nameplate and Panel No. must be Visible

All indicator LED/ flags must be clear and visible Battery and supporting accessories

Time-based Maintenance 22kV Substation

Complete overhaul of circuit breaker

Time-based Maintenance 22kV Substation

Time-based Maintenance 22kV Substation Common Defective Components....

Faulty tulip contact assembly

Faulty high voltage insulating operating arm

Time-based Maintenance

–Uncovered hidden components within circuit breaker & bus-bar

-But It cannot prevent power failures

What do we do in Singapore Power?

Maintenance Development

Inspection + Timebased Preventive Maintenance (Before 1997)

Predictive Maintenance (1998 - 2001) Condition Monitoring & Condition-based Maintenance (Since August 2001) The most common causes of electrical distribution asset's failures are well-known and operation/ maintenance managers implement several measures to monitor SWGRs, but this implies some challenges too.

These measures imply the following challenges:

- Most of the time manual process, which calls for visit at site.
- Manual data collection and analysis for decision making.
- Dependency on experts with domain critical knowledge.
- Risk of overlooking of gradual degradation or failure not visible at the time of inspection.
- The optimization of OPEX & improved risk management is not taken care of

Unplanned Shutdowns can be reduced 85% by using a proper condition monitoring system

Examples of early failure detection (e.g. slow changes of behavior/ measured values)

1 Temperature Monitoring

Can detect loose connections (e.g. bolted busbar connections or cable terminations) and insufficient contacting (e.g. withdrawable VCB)

7 VCB Monitoring

Can detect faulty VCB mechanism / components (e.g. trip coils, spring charge motors, switching time)

3 Partial Discharge Monitoring

Can detect faulty components / installations (e.g. MV cables, insulators, bushings, voltage transformers)

4

Humidity Monitoring Can prevent condensation and corrosion (which might lead to mechanical and electrical failures)

Condition Monitoring

Network Health Screening

Human Health Screening

Network Doctor

Diagnostic tools for Network Health Screening

Maintenance Strategy

Current maintenance model inclusive of

- Inspection
- Time-based Maintenance
- Condition Monitoring
- Condition-based Maintenance

MAINTENANCE STRATEGY

Bi-Yearly Manual Checks

Condition Monitoring

Ultrasonic Detection

TEV Detection

Temperature Detection

Condition Monitoring

Acoustic Partial Discharge detection

TEV Partial Discharge detection

Hot Spot detection

CONDITION BASED MAINTENANCE

Tracking spots showed high electrical stress at circuit breaker arms

Severe Overheating @ Tap Changer

Broken Metallic Ring at Tap Changer

Discovered by condition monitoring Transformer : HT 22kV Cable termination

Abnormal Signal Picked up by Thermal imager – 22kV Switchgear

Right side view of right most bus bar VT - Thermal anomaly

Left side view of left most bus bar VT - Reference Image

Abnormal Thermal image with high surface temperature due to deteriorated PT

Reference image: Normal Thermal image with good PT within the same substation

Condition Monitoring Tools for Distribution Assets

Acoustic Instrument

- Air mode
- Contact mode

Transient Earth Voltage (TEV) Instrument

Thermal Imaging Instrument

Outcome of Condition Monitoring

Network Failures Averted by Condition Monitoring

Network	FY 01/02	FY 02/03	FY 03/04	FY 04/05	FY 05/06	FY 06/07	FY 07/08	FY 08/09	FY 09/10	FY 10/11	FY 11/12	FY 12/13	FY 13/14	FY 14/15	FY 15/16	FY 16/17	FY 17/18	FY 18/19	FY 19/20	FY 20/21	FY 21/22	FY 22/23	Total
400kV	0	1	1	2	0	3	1	1	1	0	1	0	5	1	1	0	1	2	7	1	0	3	32
230kV	1	3	0	1	10	7	5	8	5	8	3	2	6	3	1	1	5	0	1	0	2	0	72
66kV	1	3	2	7	6	4	13	5	11	2	5	3	2	1	3	5	8	2	0	0	1	0	84
22kV	27	11	23	31	36	45	11	15	15	40	28	10	20	28	30	18	18	20	36	102	154	166	884
6.6kV	1	5	41	39	3	34	39	14	23	31	21	27	15	39	56	26	33	42	39	44	34	31	637
Total	30	23	67	80	55	93	69	43	55	81	58	42	48	72	91	50	65	66	83	147	191	200	1709 *

Network Failures Averted by Condition Monitoring

62

Ne	400kV		230kV	66kV	22kV	6.6kV	Total			
Failure	32		72	84	884	637	1,709			
	A	_		В						
	S\$253.98m		S\$9	5.82m	C					
	Cost of Fault		Cos	st of	S\$57.1	6m	D			
		Cond Monit		dition toring	Cost of Rectification		S\$101m Cost Avoidance	;		
			Cost Av	voidance	D = A - B -	- C	* Up to 31 Mar 23			

Copyright © All rights reserved.

System Average Interruption Duration Index (SAIDI) - Elect

CCK Incident : 3.86 mins (04/05) KPI Target : < 1 min 8 **Record Electricity SAIDI of** 6 5.37 6.6 seconds per year 5.00 4.00 3.85 4 3.70 2.20 2.25 1.99 2 1.21 1.14 0.87 0.74 0.69 0.70 0.56 0.56 0.28 0.47 0.176 0.25 0.15 0 98/99 01/02 02/03 03/04 04/05 05/06 07/08 08/09 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17 17/18 18/19 19/20 20/21 21/22 97/98 99/00 00/01 06/07 22/23

Minutes

System Average Interruption Frequency Index (SAIFI) - Elect

Going Forward

Condition Monitoring: Circuit Breaker Monitoring

Crucial component monitoring (e.g. Circuit Breaker Monitoring)

- Faulty equipment

 e.g. faulty trip coils, VCB
 spring charging mechanism,
 VCB timing
- Electrical Lifetime of the main VCB contacts based on I2t
- Mechanical lifetime of the VCB based on number of operations

Assetguard IoT -VCB monitoring data acquisition device

Hall Sensors (monitor currents of trip coil , closing coil and VCB charging motor

VCB monitoring data acquisition device

Hall sensors and VCB monitoring device in LV Compartment

Condition Monitoring: Partial Discharge Monitorir

- Defective components e.g. damaged insulators, bushings, voltage transformers
- Degradation of insulating media e.g. aging
- Faulty manufacturing e.g. sharp edges of busbars instead of rounded edges
- Faulty installation

 e.g. wrong installation of
 voltage transformers at GIS
- Aggressive environment conditions
 e.g. ingress of dust and moisture

GIS: Earth screens of all MV cables in a feeder through an HFCT (High-frequency-CT) and one Rogowski coil per busbar section for synchronization.

AIS: Same Antennas used to receive temperature values from SAW sensors will be used for partial discharge detection

ROBOTIC INSPECTION

€

E Summary

۲

O Energy

Health

×

Configure

i Notification

Language

?

SWG-NXAIR

Asia/Kolkata 2022-07-29 11:03 AM

 \mathbf{v}

♠ Mumbai > Kalwa-Substation-H4161 > SWG-NXAIR

Asset Information	Connectivity 🛆	Energy Budget monitoring in FY	Availability in FY	Curre	ent Health Index	CO2 Em	nission in FY
Inventory Number	DFRT435345357JH						
Purchase Order	PO-535211071						
Supplier Name	Siemens	Budget USD 180000	80%		Attention Required	Č	
Supplier Reference	330123456FGH7653224						
Commission Date	Sep 01, 2021	Current USD 25000					59 t
Asset Utilization	Energy Consumption 📃	Feeder	Panel Number	Status	Availability (%)	Alarms	Health index
		CB-INC-Gen-Trafo-NXAIR	01	ON	80%	8	
500		CB-DG-INC-NXAIR	02	ON	50%	0	•
400		DIS-TIE-OG-NXAIR	03	ON	50%	3	
300		MP-BM-NXAIR	04	ON	80%	0	
200		SWDP-OG-Trafo	05	OFF	20%	0	
100	·····	BCM-M-M-NXAIR	06	EARTHED	80%	0	0
0		CTR-MOT-OG-NXAIR	07	A TRIPPED	50%	1	
02:00 (04:00 06:00 08:00 10:00 afo-NXAIR	CB-TRF-OG-NXAIR	08	EARTHED	50%	0	
		CCP-OG-TIE-NXAIR	09	OFF	20%	0	
		BSP-BSP-NXAIR	10	TRIPPED	80%	1	0

?

Energy Monitoring

CB-DG-INC-NXAIR

▦

 \odot

X Maintenan

(i) Notificatio

?

♠ Mumbai → Kalwa-Substation-H4161 → SWG-NXAIR → Conditioning Monitoring Overview

NXAIR - Condition Monitoring Overview

Kalwa-Substation-H4161

• NXAIR •

Operation	Feeder	Panel No.	Tem	perature Monito	oring	Humidity					
Documents			Busbar	Cable Compartment	Bushing	Monitoring	Switching Device	Withdrawal Part	Earthing Switch	Bus Earthing Switch	Busbar
Ø	CB-INC-Gen-Trafo-NXAIR	01	•				•				
Energy	CB-DG-INC-NXAIR	02		•	0			•	0		
Health	DIS-TIE-OG-NXAIR	03	•	N/A	•	•	•			N/A	N/A
Maintenance	MP-BM-NXAIR	04		N/A	N/A						N/A
Configure	SWDP-OG-Trafo	05		0	N/A			0	0	N/A	N/A
	BCM-M-M-NXAIR	06	•		N/A	•	•		N/A	•	
	CTR-MOT-OG-NXAIR	07	N/A	N/A	N/A				N/A		
•	CB-TRF-OG-NXAIR	08									
i	CCP-OG-TIE-NXAIR	09									
Notification	BSP-BSP-NXAIR	10	•	0	0	•	•	0	0	0	0
Language											

Warning

Thank You

