Event Details/Waveforms 22nd Annual PQSynergy™ International Conference and Exhibition 2024. 24 to 25 Sept 2024, Bangkok Thailand 10000 Grid-Tied Solar PV in Singapore 5000 A PQ perspective -5000 Er. Muhammad Najmi Bin Bohari P.Eng, ACPE, LEW, MIES, M-CIGRE, MIEEE najmi@pd.com.sg -10000 - A-8 V ----- B-C V ----- C-A V Consulting.Analysis.Inspection.Training.Equipment Towards Better Power Quality & Reliability 21:44:04.7 21:44:04.8 21:44:04.9 Potentia Dynamics Pte Ltd

powerquality.sg the ABCs of power quality in Singapore

My Brief PQ Intro

- Have been doing PQ measurement/analysis for over 16 years now (and still do).
- Got to know more PQ portables (beyond just Fluke & Hioki) when I joined the Utility (SP PowerGrid) as a PQ engineer in 2009.

	Waveforms (urrent 1.5 MVA 1	∓ 1@6 Second Chin Bee	Rd		
3.0 kA			وأواواواو والماور والماور والماور	وراو اوراو	والمرابية المرابية المرابية المرابية المرابية المرابية المرابية المرابية المرابية المرابية	
2.5 kA			ANNA BUANKAN			
1.5 kA						
1.0 kA						lltiddaddaddaddaddaddaddaddad
0.5 kA						
-0.5 kA	ultra a la la la la					
-1.0 kA						
-1.5 kA	KAN MANA	N.N.N.N.N.N.N.N.N.N				
-2.5 kA						
-3.0 kA			Antidistation of a large de	a na ang ang ang ang ang ang ang ang ang	a a a a a a a a a a a a a a a a a a a	M
	RMS Current	1.5 MVA TF 1@6	Second Chin Bee Rd			
2.2 kA						
2.0 ka			P			ł
5.0 AB			//			
1.8 kA			[
1.6 kA						
1.4.64						1
174 8.4						
1.2 kA	- Averavilian					
1.0 kA						
						Frank Street Str
		08:37:1	9.000ms	500ms	08:37:20.000ms	500ms
	Wednesday	4 November 201	12: 08:37:18 - 08:37:20			
		Min/Max L1 W	aveforms Current, 1.5 MVA TF	1@6 Second Chin Bee Rd	Min/Max L2 RMS Current (Ducle by Ducle), 1.5 MVA 1	F 1@6 Second Chin Bee Rd
		No. Mar. 14 Da	10 Consult (Conte las Conte) 1	E MAR TE 1000 Conned Chin Day Da	Min Man 123Manatama Carana 1 E16/4 TE 190 Ca	and Chin Res Rd
		mitermax LT hr	is content (cycle by cycle), i.	S MVA TP 1046 Second Chin bee No	MEDMAR LS WAVEOURS CORER, 1.5 MVA TP 166 SE	COND CHIEFBER NU
		Min/Max L2 W	aveforms Current, 1.5 MVA TF	1@6 Second Chin Bee Rd	Min/Max L3 RMS Current (Cycle by Cycle), 1.5 MVA 1	F 1@6 Second Chin Bee Rd

Outline

- Solar PV in Singapore Today
- DC Injection
- Localized Overvoltage Issues
- Harmonics from Inverters
- Case Study 'Loud humming' sound from Solar PV

Solar PV in Singapore Today

Top Stories Latest News Asia East Asia Singapore Commentary Sustainability CNA Insider Lifestyle Watch Listen + All Sections 🚊 🧧 🝳 Δ

Singapore

Landed homes powered by sunshine: More owners capitalise on solar panels as prices dip

> A competitive market, coupled with falling prices of solar panels, mean homeowners are now spoilt for choice.

Singapore Green Plan 2030 So, he installed a full suite of solar panels on the roof of his landed property las FAST

Source: Channel News Asia

month to harness the sun's energy.

Source: Energy Market Authority Singapore

Common Inverter Brands in Singapore

Then (1P 7kW LF inverter)

Now (3P 115kW transformerless inverter)

Common Inverter Brands in Singapore

Inverter Brands

Source: National Solar Repository of Singapore

Private Housing (Landed homes)

Source: Rezeca Renewables

Public Housing

Public Housing (vertical)

Commercial

Source: Rezeca Renewables

Source: Energetix

Shopping Malls

Solar Farms

Outline

- Solar PV in Singapore Today
- DC Injection
- Localized Overvoltage Issues
- Harmonics from Inverters
- Case Study 'Loud humming' sound from Solar PV

DC Injection

- Inverter converts DC output power from PV panels and converting • into AC power
- Possibility of a DC component will appear and flow into the Grid has to be considered

Topology	Description				
Low Frequency Transformer	A low frequency transformer is implemented between the DC-AC converter of the inverter and grid connection.				
High Frequency Transformer	and grid connection. A high frequency transformer is implemented on the DC side of the actual inverter. DC voltage is firstly converted into a high-frequency alternating voltage. This alternating voltage from the secondary side of the transformer is then again rectified and converted by the DC- AC converter into a 50/60Hz voltage.				
Transformerless	No transformer used. DC-AC converter is connected to the grid without any galvanic isolation.				

MAIN TYPES OF INVERTER TOPOLOGIES

SOME KNOWN EFFECTS

Mognetizing current vs. time

Fig. 3. Effect of direct current on transformer satura tion and relation between flux and magnetizing

harmonic source) Audible noise Reactive power demand

Known Effects of DC Injection

Cause transformer saturation · Saturation then results in the injection of harmonic currents into the system (transformer becomes a significant Increase heating of magnetic components

From PQSynergy 2016 presentation

current.

DC Injection

In the early days, where transformerless inverter(s) were used, the only way to meet the connection requirement was to use an isolation transformer

DC Injection

- Impact(s) on the distribution transformer is still largely unknown
- Allowable values increased over the years in view of larger transformerless inverter(s) being introduced to the market
- Still technically challenging to measure DC in the presence of large AC

Voltage at PCC [kV] Output outpu							1) Power Q	uality				
Total harmonic voltage distortion, V _{THD} Voltage at PCC (kV) 0.23 / 0.4 6.6 / 22 66 2 Harmonics Total harmonic voltage distortion, V _{THD} < 5% < 4% < 3% < 1.5% Harmonics Individual harmonic voltage (odd) < 4% < 3% < 1.5% Individual harmonic voltage (odd) < 4% < 3% < 2% Max DC injection per phase (normal) < 0.5% of inverter rating, cap at 100mA DC injection is deprecated output current	1) Power O	uality								Voltage at I	PCC (kV)	
Out of the second seco	ij Towerd	county		Voltage at	PCC (kV)				0.23 / 0.4	6.6 / 22	66	230 / 400
Total harmonic voltage distortion, V _{THD} < 5% < 4% < 3% < 1.5% Harmonics Individual harmonic voltage [odd] < 4%			0.23 / 0.4	6.6 / 22	66	230 / 400		Total harmonic voltage distortion, V _{THD}	< 5%	< 4%	< 3%	< 1.5%
Harmonics Individual harmonic voltage [odd] < 4% < 3% < 2% < 1% Individual harmonic voltage [even] - 2% < 2%		Total harmonic voltage distortion, V _{THD}	< 5%	< 4%	< 3%	< 1.5%	Harmonics	Individual harmonic voltage (odd)	< 4%	< 3%	< 2%	< 1%
Include#Harmonic voltage [even] < 2% < 2% < 1% < 0.5% Max DC injection per phase [normal] < 20 mA	Harmonics	Individual harmonic voltage (odd)	< 4%	< 3%	< 2%	< 1%		Individual barmonic voltage (even)	< 2%	< 2%	< 1%	< 0.5%
Max DC injection per phase [normal] < 20 mA		Individual harmonic voltage (even)	< 2%	< 2%	< 1%	< 0.5%						
DC Injection Max DC injection per phase [abnormal] < 0.5% of inverter rating, cap at 100mA DC injection is deprecated DC Injection DC Injection DC Injection DC Injection DDE Half submit technical justification in the PC compliance report for consideration, if the DC Injection DC Injection DC Injection DC Injection DC Injection DC Injection		Max DC injection per phase [normal]	< 20 mA	< 20 mA					< 0.5% of			
The LEW shall submit technical justification in the PO compliance report for consideration, if the PV system	DC Injection	Max DC injection per phase (abnormal)	< 0.5% of inverter rating, cap at 100mA	DC in	jection is dep	recated	DC Injection	Max DC injection per phase	output current	DC inj	ection is depr	ecated
DC injection at the PCC deviates from this requirement.		The LEW shall submit technical justification in the PG compliance report for consideration, if the PV system DC injection at the PCC deviates from this requirement.						The LEW shall submit technical justification system DC injection at the PCC deviates f	n in the PQ complia rom this requiremer	nce report for c t.	onsideration,	if the DER

Typical Inverter DC Injection Test Values (then)

• 12kW 3-phase

DC injection								
	P/Pn [%]							
0	10	55	100					
Limit	0,25% In	0,25% In	0,25% In					
MV	0,006 A	0,009 A	0,008 A					
%Inom	0,04%	0,05%	0,05%					
Verification	1	1	1					

• 25kW 3-phase

DC injection									
		P/Pn [%]							
10 55 100									
Limit	0,25% In	0,25% In	0,25% In						
MV	0,00953 A	0,0211 A	0,02431 A						
%Inom	0,03%	0,06%	0,07%						
Verification	A	A	A						

Typical Inverter DC Injection Test Values (now)

• 25kW 3-phase

Table: Power Quality. DC injection									Ρ
Model								\$	
Test power		10%		55%			100%		
level	L1	L2	L3	L1	L2	L3	L1	L2	L3
Recorded value in Amps	0.071	0.061	0.015	0.067	0.063	0.017	0.046	0.080	0.035
as % of rated AC current	0.197	0.169	0.042	0.186	0.175	0.047	0.127	0.222	0.097
Limit	0.25%		0.25%			0.25%			
Supplementary	informatio	n: N/A							

• 100kW 3-phase

A.7.1.4.4 DC inj	ection		P
L1 phase			
Test level power	10%	55%	100%
Abs, Max, DC (mA)	170	170	57
As % of rated AC current	0,117%	0,117%	0,039%
Abs, Ave, DC (mA)	79	66	11
As % of rated AC current	0,055%	0,045%	0,008%
Limit	0,25%	0,25%	0,25%
L2 phase			
Test level power	10%	55%	100%
Abs, Max, DC (mA)	200	210	65
As % of rated AC current	0,138%	0,1 <mark>4</mark> 5%	0,045%
Abs, Ave, DC (mA)	109	106	13
As % of rated AC current	0,075%	0,073%	0,009%
Limit	0,25%	0,25%	0,25%
L3 phase			2
Test level power	10%	55%	100%
Abs, Max, DC (mA)	120	130	79
As % of rated AC current	0,083%	0,090%	0,055%
Abs, Ave, DC (mA)	39	36	31
As % of rated AC current	0,027%	0,025%	0,022%
Limit	0,25%	0,25%	0,25%

Outline

- Solar PV in Singapore Today
- DC Injection
- Localized Overvoltage Issues
- Harmonics from Inverters
- Case Study 'Loud humming' sound from Solar PV

Localized Overvoltage Issues

- In recent times, there have been noticeable complaints of solar inverters tripping due to 'Overvoltage'.
- Typically, in private landed housing estates.
- Between 12pm and 2pm

2) Protectio	on			253 < V < 276				
		Abnormal	Voltage Range (% of nomination	al voltage)				
		V < 50	50 ≤ V < 88	110 < V < 120				
	Minimum Holding Time (s) - requirement	> 0.6	> 2.0	> 1.0				
Abnormal Voltage	Maximum Tripping Time (s) - requirement	≤ 1.6	≤ 3.0	≤ 2.0				
Response	The DER generating unit shall be capable of disconnecting from the transmission system if under or over voltage is detected at the connected person's incoming switchboard or at the generating unit terminal. Depending on the abnormal voltage range, the generating unit shall remain in operation for a minimum holding time and disconnect before the maximum tripping time as specified above.							

Standard SG LV Voltage +/- 6% of 230V (216.2V to 243.8V) +/- 6% of 400V (376V to 424V)

powerquality.sg the ABCs of power quality in Singapore

Outline

- Solar PV in Singapore Today
- DC Injection
- Localized Overvoltage Issues
- Harmonics from Inverters
- Case Study 'Loud humming' sound from Solar PV

ч./.1.4.1 По	armonic		113310115				F
		Generatir	ng Unit te	sted to BS	6 EN 610	00-3-12	
fest result:							
Generating	g Unit rating	per phase (r	pp)				Harmonic %
		1	At 100%% o	f rated outpu	it i		
Harmonic	Measure	d Value (MV) in Amps	Measured Value (MV) in %			Limit in BS EN61000 3-12 in [%]
	L1	L2	L3	L1	L2	L3	
1st	144,96	144,812	145,143	100,022	99,921	100,148	
2nd	0,063	0,130	0,112	0,043	0,090	0,077	1
3rd	0,563	0,536	0,371	0,389	0,370	0,256	4
4th	0,082	0,080	0,064	0,057	0,055	0,044	1
5th	0,363	0,323	0,439	0,250	0,223	0,303	4
6th	0,053	0,043	0,042	0,036	0,029	0,029	1
7th	0,230	0,120	0,122	0,158	0,083	0,084	4
8th	0,030	0,032	0,035	0,021	0,022	0,024	1
9th	0,044	0,125	0,127	0,030	0,086	0,088	4

A.7.1.4.1 Ha	Р						
		Generatir	ng Unit tes	sted to BS	S EN 6100	0-3-12	
Test result:							
47th	0,171	0,131	0,101	0,118	0,090	0,070	77
48th	0,052	0,050	0,048	0,036	0,035	0,033	
49th	0,305	0,261	0,258	0,211	0,180	0,178	
50th	0,059	0,057	0,055	0,041	0,039	0,038	
THD				0,797	0,799	0,768	13,0

Harmonics from Inverters

- 3 cases from Solar Farms
- Generally, these are meant for 'temporary usage' till the empty land is marked for development
- Unmanned locations with minimal on-site loads
- Intake voltage from Grid = 22kV
- Inverters AC output at 400V or 800V
- D-Y transformers (LV to 22kV)
- PQ were done at 22kV as part of Utility's compliance requirements

- 5.30MWp / 4.65MWac
- 2 x 22kV Intake from Utility
- Background voltage harmonics: Low <2%
- Measurements at Utility intake 22kV
- 50kWac inverter (AC output at 400V)
- 2350kWac (47 nos) Customer Service 1
- 2300kWac (46 nos) Customer Service 2
- 2 nos of 22kV / LV 2.5MVA transformers

ITHD% - scaled to aggregated rated inverter AC output

ITHD% - scaled to aggregated rated inverter AC output

powerquality.sg the ABCs of power quality in Singapore

- 1.48MWp / 1.20MWac
- 1 x 22kV Intake from Utility
- Measurements at Utility intake 22kV
- 1 nos of 22kV / LV 1.5MVA transformer
- 100kWac inverter (AC output at 400V) 12 nos

TDD% - IL= aggregated rated inverter AC output

powerquality.sg the ABCs of power quality in Singapore

Measurement period 24/2/2022 2:40:00 PM - 3/3/2022 3:09:00 PM Display period 24/2/2022 2:39:00 PM - 3/3/2022 3:09:55 PM Trend interval 1min

- 16.19MWp / 13.32MWac
- 2 x 22kV Intake from Utility
- Measurements at Utility intake 22kV
- 185kWac inverter (AC output at 800V)
- 8880kWac (48 nos) Customer Service 1
- 4440kWac (24 nos) Customer Service 2
- 3 nos of 22kV / LV 6MVA transformers

ITHD% - scaled to aggregated rated inverter AC output

powerquality.sg the ABCs of power quality in Singapore

Solar Farm Harmonics Summary (CP95)

Location	ITHD (%)	Significant Ih	VTHD (%) Limit = 4%
A (CS1)	1.7	5,7,11	1.7
A (CS2)	1.63	5,7,11	1.6
В	0.88	5,7,11	2.9
C (CS1)	1.01	7,11,13	3.5
C (CS2)	1.04	7,11,13	3.5

Measured at a PV-DB with 1 no of 100kW inverter

Outline

- Solar PV in Singapore Today
- DC Injection
- Localized Overvoltage Issues
- Harmonics from Inverters
- Case Study 'Loud humming' sound from Solar PV

The Problem

- Complaints from building occupants of significant humming noises
- Typically occurred between 11am and 2pm
- On-site personnel traced the noises to set of AC cables between the electrical switchroom and the rooftop PV AC-DB
- It was suggested there could be harmonics issues on hand, thus we were called in to monitor the harmonics level

Ground Floor LV Switchroom

3 sets of 4 x 500sqmm XLPE/PVC 1C on cable ladder w cover – on exterior walls of building

The PV System

- 1.35MWp / 1.116kWac
- 18 nos of 60kWac + 1 no 36kWac inverters
- Connected downstream of a 3MVA 22kV/LV D-Y transformer
- PQ measurements done at LV MSB-Extension

Harmonics Issue? - Unlikely

ITHD – in % of Aggregated Inverter Output

Snapshot Waveforms

Snapshot Trend on Phase L3

- 3 cables per phase
- Clamped on each of the 3 cables of Phase L3 i.e
- Channel A L3 Cable 1
- Channel B L3 Cable 2
- Channel C L3 Cable 3
- Channel D Overall L3

1 cable accounts for about 62% of the total load carried on Phase L3

Findings

- AC current naturally generates a changing magnetic field.
- In turn, it produces varying electromagnetic forces, exerting on the current-carrying component (e.g. cables), causing them to vibrate with its supporting mechanical structure (e.g. cable tray, ladder, cover), hence producing the humming sound / noise.
- Sound can get amplified if this magnitude was high (nearing cable's ampacity) or in the presence of harmonics.
- Harmonics (voltage & current) values were found to be typical and acceptable.

Findings

- Assuming this unequal distribution ratio remained constant, there is a possibility that this 500sqmm XLPE/PVC cable carried approximately 836A (1394*0.6) during the peak loads on Phase L3
- Thus, it is plausible that the humming noises were largely due to some of the cable(s) carrying high loads nearing its ampacity.

IEC 60364-5-52

- The known problem of uneven current distribution among large (>50sqmm) parallel copper conductors are mainly due to differences in self and mutual inductances, caused by how the cables are laid and arranged.
- IEC 60364-5-52 provides guidance on such arrangement.

