

21st Annual PQSynergy[™] International Conference and Exhibition 2023

Cass study : Power Quality problems in Container Terminal Prawat Deekla, Power Quality Products, Hitachi Energy (Thailand) Limited

2022-09-18

© 2023 Hitachi Energy. All rights reserved.

- 1. Introduction
- 2. Abstract
- 3. Principles
- 4. Case study
- 5. Q & A

Internal © 2023 Hitachi Energy. All rights reserved.

Introduction

Our heritage: Hitachi Energy

3

Case study

Case 1: Fast Reactive Compensation at MV level with dynamic response compensator at Container Terminal

Internal © 2023 Hitachi Energy. All rights reserved.

Abstract

Sea transport has been the largest carrier of freight throughout recorded history. Today, it remains just as important as 90% of international trade is being handled by merchant shipping. Quick cargo handling at ports is critical to reduce the cost of docking and technology is a major factor in achieving this.

Poor power quality can damage the port's electrical system. It is also prone to spreading through the supply grid and can cause disturbances such as voltage fluctuations in the electrical networks of other users on the same grid. In some cases, penalties are incurred.

5

Traditionally, low $\cos \varphi$ problems are solved using fixed or contactor switched capacitor banks. However, loads whose reactive power demand is high and/or has a rapidly changing pattern, cannot be adequately compensated by these solutions.

6

Internal © 2023 Hitachi Energy. All rights reserved.

7

Conventional banks

Transient free switching

Internal © 2023 Hitachi Energy. All rights reserved.

8

Comparation

Conventional banks

Need time to discharge the capacitors

High inrush current

Limited life of the contactors

Create disturbances

Put stress on the elements

Transient free switching

Ultra rapid response time No disturbances at switching in of the capacitors

9

Internal © 2023 Hitachi Energy. All rights reserved.

10

Transient free switching

Project background

- The terminal has seven quay cranes that operate simultaneously and move each container in less than two minutes.
- Container Terminal is situated at the Port
- Crane is main load with DC drive
- Load varies fast (a fast-varying active power & reactive power)

Internal © 2023 Hitachi Energy. All rights reserved.

11

Problems

The Power Quality Challenge

- The cranes at the port use DC drives to enhance the efficiency of their motors, however they draw high reactive power. This results in low power factor and poor power quality.
- Consequences of poor power quality:
 - Potential damage to the port's electrical system
 - Disturbances such as voltage fluctuations in the electrical networks of other users on the same grid
 - Penalties from the utility of up to \$50,000 per month

Single line diagram

- □ The data measurement was measured when without existing capacitor bank in system.
- □ The data measurement was measured when the system ran normal load.

Internal © 2023 Hitachi Energy. All rights reserved.

13

- **D** Existing power equipment:
 - Distribution Transformer 4,000 kVA, 20 kV/6.6 kV
 - The system does have existing plain shunt capacitor bank
- Background
 - Port Crane, large DC motor
- □ Issues
 - Low Power Factor, High %THDv & %THDi

Summary table of field measurement at 6.6kV

The Data of Power, Power Factor, Voltage, Current, THD and individual harmonics

	Parameter	Data at # M1 (6.6 kV)				Harmonic Order	Existing harmonic pollution		Recommendation G5/4 at 6.6 kV	
		When system have crane 4 units								
		L1	L2	L3		V (%)	I (A)	V (%)	I (A)	
	V _{L-L} (V)	6,385	6,391	6,386		2	0.1	5.8	1.5	28.9
	l (Amp.)	369.07	368.34	367.74		3	0.1	3.3	3.0	48.1
		2,405,0				5	3.3	75.1	3.0	28.9
		3,105.0				7	0.2	14.4	3.0	41.2
	S (kVA)	3,910.6				9	0.1	2.4	1.2	9.6
	Q (kvar)	2,638.2				11	0.8	15.0	2.0	39.4
	PF	0.762 lagging				13	0.5	5.5	2.0	28.7
	DPF	0.780 lagging				15	0.1	1.6	0.3	1.4
	% THDv	3.69%	3.62%	3.46%		17	0.4	3.0	1.6	13.6
	% THDI	21.90%	21.19%	22.21%		19	0.3	2.2	1.2	9.1
						21	0.2	1.2	0.2	0.7

%THD

3.69%

21.90%

4.0%

-

Internal © 2023 Hitachi Energy. All rights reserved.

14

Monitoring results at 6.6kV

□ Harmonics Voltage and Current waveform at Main Incoming 6.6kV (#M1) when ran crane 4 units.

Internal © 2023 Hitachi Energy. All rights reserved.

15

HITACHI Inspire the Next

Monitoring results at 6.6kV

Internal © 2023 Hitachi Energy. All rights reserved.

Monitoring results at 6.6kV

Internal © 2023 Hitachi Energy. All rights reserved.

17

Monitoring results at 6.6kV

OHITACHI Energy

Hitachi Energy Proposed

Item1 - LV Dynacomp 7% Detuned Shunt Capacitor Bank

• 2400 kvar [(2x100kvar) + (3x200kvar) + (4x400kvar)], 690V, 50Hz, 3Ph3

Item2 - Distribution transformer, dry type

- 3200kVA, 20kV/690V, 50Hz, 3Ph

LV. al

Internal © 2023 Hitachi Energy. All rights reserved.

20

Photo of installation

Measurement at 20kV

Internal © 2023 Hitachi Energy. All rights reserved.

21

The Data of Power, Power Factor, Voltage, Current, and THD

Parameter	Data at # M1 (20 kV)							
	V	Vithout Dynacom	р	With Dynacomp				
	L1	L2	L3	L1	L2	L3		
V _{L-L} (V)	19,900	19,980	19,940	20,220 🕇	20,340 懀	20,260 懀		
I (Amp.)	112	109	111	82 🦊	82 🦊	82 🦊		
P (kW)		2,799		2,774				
S (kVA)		3,808		2,864 👢				
Q (kvar)		2,572		708 📕				
PF		0.732 Lagging			0.969 Lagging	1		
DPF		0.733 Lagging			0.976 Lagging	1		
% THDv	1.40% 1.50% 1.30%			0.90% 🦊	1.10% 👃	0.90% 🦊		

Result without Dynacomp and with Dynacomp

Internal 22 © 2023 Hitachi Energy. All rights reserved.

Result Before and After

23 © 2023 Hitachi Energy. All rights reserved.

Internal

Result Before and After

24 © 2023 Hitachi Energy. All rights reserved.

Hitachi Energy Dynacomp

- The Dynacomp is a low-voltage thyristor-switched capacitor bank which can be used for ultra-rapid, reactive power compensation and improving power quality.
- Other Applications of Dynacomp include:
 - Spot welding machines
 - Rolling mills and big presses with fast switching loads
 - Cranes
 - Lifts
 - Rubber mixer
 - Sawmills and tunnel drills which have very high switching rates

Internal 25 © 2023 Hitachi Energy. All rights reserved.

Customer benefits

- Improve power factor ٠
- Improve Power Factor without transients
- Increases available drive power ٠
- Increases network capability ٠
- Can also filter harmonics

	Tanggal Baca	LWBP	WBP	KVARH	
Stand Lalu	01-10-2015	5151000	1154800	7554400	
Stand Akhir	01-11-2015	5631200	1264600	7671900	
1. Biaya Beban 2. Biaya Pemakaja				: Rp.	0
a. Biaya LWBP				: Rp.	741,538,286 🛓
b. Biaya WBP Rp. 25					254,334,352
c. Blaya kVarh				: Rp.	0
d. Discount TMP	/Capping (-)	; Rp.	0		
Total Rupiah Pemak	alan Tenaga Listrik			: Rp.	995,872,638

Zero penalty after 1 month installation

Internal © 2023 Hitachi Energy. All rights reserved.

Hitachi Energy

Hitachi Energy (Thailand): Thailand Business Unit

Hitachi Energy (Thailand): Thailand Business Unit

High Voltage Products

Hitachi Energy is a leader in high-voltage technology, offering a wide range of high-voltage products up to 1,200-kilovolt (kV). We help to enhance the safety, reliability and efficiency of power networks while minimizing environmental impact. Our technology leadership continues to facilitate innovations in areas such as ultra-high-voltage power transmission, enabling smart grids and enhancing eco-efficiency.

Category	Offering	Description				
High Voltage	Air insulated switchgear	Dead Tank and Live Tank Circuit Breakers (single and 3 phase operations), HV Disconnect Switches, PASS Hybrid Breakers				
	Gas insulated switchgear	SF6 and EcoGas solutions, Indoor and Outdoor, packaged solutions (IGA)				
ᆔᆜ	Generator circuit breakers	80-1800 MW solutions with interrupting capacity up to 825 kAIC				
と で の で	Arresters	Distribution, substation and transmission solutions				
선가서	Capacitors & filters	LV-HV solutions, capacitors cans, distribution and shunt banks, metal enclosed capacitor banks, active and passive filter solutions				
		Air cooled reactors and battery energy storage solutions				
	HV instrument transformers	Station Service Voltage Transformers (SSVTs), Current Transformers (CT), Voltage Transformers (VTs), Combined Current Voltage Transformers (CCVTs), Inductive Voltage Transformers (IVTs) and Combos				

Power Quality Products

29 © 2023 Hitachi Energy. All rights reserved.

Profile

Hitachi Energy Bangpoo Factory, Samutprakarn, Thailand

Started 1990

- ISO9001 & ISO14001 & ISO 45001 certified

Activities

Manufacture LV Capacitor elements

- Assembly LV Capacitor units
- Assembly LV & HV Capacitor banks
- Solution providers of PQ, LV/MV/HV Capacitors/Filter
- Engineering & Services
- Marketing & Sales

Customers

- Thailand: LV/MV/HV Capacitors and PQ solutions to industries and utilities
- Export: CLMD to ID, PH, MY, SG, VN, AU, MM, LA, KH, KR and IPE to CN, IN, BE, TR, GR, TW, BR, CA, MXp
- Export: LV PQ solutions to ID, PH, MY, VN, KR, LA, MM, KH and MV Capacitors for flexible sourcing KR, MY, ID, PH, VN

Internal © 2023 Hitachi Energy. All rights reserved.

HITACHI Inspire the Next

Introduction

OHitachi Energy

Introduction

HITACHI Inspire the Next

LV / MV Capacitor bank

- Key Applications
 - Mining
 - Heavy industry
 - Pulp & Paper
 - Cement
 - Plastics
 - Petro-Chemical
 - Oil & Gas
 - Renewable energy resource

MV reactive power compensation solutions

Internal © 2023 Hitachi Energy. All rights reserved.

32

33 kV Detuned For Industry

22 kV Detuned For Wind Farm

22/33 kV C-Bank, PEA For utility grids

11 kV Detuned For Petro-Chemical plant

12/24 kV C-Bank, MEA For utility grids

Introduction

HV Open-rack capacitor bank

The grid needed to be strengthened to meet the need for improved transmission capacity

115 kV C-Bank, PEA230 kV C-Bank,For utility grids**EGAT**

For utility grids

115 kV C-Bank, EDC For utility grids

115 kV C-Bank, EGAT For utility grids

Internal © 2023 Hitachi Energy. All rights reserved.

33

Read more ...

https://www.hitachienergy.com/offering/product-and-system/capacitors-and-filters

Internal © 2023 Hitachi Energy. All rights reserved.

@Hitachi Energy

HITACHI

Inspire the Next

Q & A

Internal © 2023 Hitachi Energy. All rights reserved.

Contact

Prawat Deekla (ประวัติ ดีกล้า) Engineering Manager Email: <u>prawat.deekla1@hitachienergy.com</u> LINE ID : wattdee Tel: 02 481 5400, Mobile: 094 480 6066 Power Quality Products Power & Industry Components, High Voltage Products Hitachi Energy (Thailand) Limited

Internal36© 2023 Hitachi Energy. All rights reserved.

HITACHI Inspire the Next